Many tasks in active perception require that we be able to combine different information from a variety of sensors that relate to one or more features of the environment. Prior to combining these data, we must test our observations for consistency. The purpose of this paper is to examine sensor fusion problems for linear location data models using statistical decision theory (SDT). The contribution of this paper is the application of SDT to obtain: (i) a robust test of the hypothesis that data from different sensors are consistent; and (ii) a robust procedure for combining the data that pass this preliminary consistency test. Here, robustness refers to the statistical effectiveness of the decision rules when the probability distributions of the observation noise and the a priori position information associated with the individual sensors are uncertain. The standard linear location data model refers to observations of the form: Z = ϴ + V, where V represents additive sensor noise and ϴ denotes the \u22sensed\u22 parameter of interest to the observer. While the theory addressed in this paper applies to many uncertainty classes, the primary focus of this paper is on asymmetric and/or multimodal models, that allow one to account for very general deviations from nominal sampling distributions. This paper extends earlier results in SDT and multi-sensor fusion obtained by [Zeytinoglu and Mintz, 1984], [Zeytinoglu and Mintz, 1988], and [McKendall and Mintz, 1988].
展开▼
机译:主动感知中的许多任务要求我们能够组合来自与环境的一个或多个特征相关的各种传感器的不同信息。在合并这些数据之前,我们必须测试我们的观察结果的一致性。本文的目的是使用统计决策理论(SDT)检查线性位置数据模型的传感器融合问题。本文的贡献是利用SDT来获得:(i)对来自不同传感器的数据是一致的这一假设的可靠检验; (ii)合并通过此初步一致性测试的数据的鲁棒程序。在此,鲁棒性是指当观察噪声的概率分布和与各个传感器相关联的先验位置信息不确定时,决策规则的统计有效性。标准线性位置数据模型是指以下形式的观测值:Z = ϴ + V,其中V表示附加的传感器噪声,而ϴ表示观察者感兴趣的\ u22sensed \ u22参数。尽管本文中讨论的理论适用于许多不确定性类别,但本文的主要重点是非对称和/或多峰模型,该模型可以解决与名义采样分布非常普遍的偏差。本文扩展了由[Zeytinoglu and Mintz,1984],[Zeytinoglu and Mintz,1988]和[McKendall and Mintz,1988]获得的SDT和多传感器融合的早期结果。
展开▼